6天前(2025-05-03)

机器学习 : 全彩图解+微课+Python编程(鸢尾花书系列第7册)

90
9.8
6天前
机器学习 : 全彩图解+微课+Python编程(鸢尾花书系列第7册)封面
90
9.8
语言:
中文
作者:
姜伟生
出版社:
清华大学出版社
发布时间:
2024年8月
系列:
鸢尾花数学大系
页数:
538
ISBN:
9787302666769

内容简介

本书是“鸢尾花数学大系:从加减乘除到机器学习”丛书的最后一册,前六本解决了编程、可视化、数学、 数据方面的诸多问题,而本书将开启机器学习经典算法的学习之旅。

本书设置了 24 个话题,对应四大类机器学习经典算法(回归、分类、降维、聚类),覆盖算法包括: 回归分析、多元线性回归、非线性回归、正则化回归、贝叶斯回归、高斯过程、k 最近邻分类、朴素贝叶 斯分类、高斯判别分析、支持向量机、核技巧、决策树、主成分分析、截断奇异值分解、主成分分析进阶、 主成分分析与回归、核主成分分析、典型相关分析、 k 均值聚类、高斯混合模型、最大期望算法、层次聚类、 密度聚类、谱聚类。

本书选取算法模型的目标是覆盖 Scikit-Learn 库的常用机器学习算法函数,让读者充分理解算法理论, 又能联系实际应用。因此,在学习本书时,特别希望调用 Scikit-Learn 各种函数来解决问题之余,更要理解 算法背后的数学工具。因此,本书给出适度的数学推导以及扩展阅读。

本书提供代码示例和视频讲解,“鸢尾花书”强调在 JupyterLab 自主探究学习才能提高编程技能。本 书配套微课也主要以配套 Jupyter Notebooks 为核心,希望读者边看视频,边动手练习。

本书读者群包括所有试图用机器学习解决问题的朋友,尤其适用于机器学习入门、初级程序员转型、 高级数据分析师、机器学习进阶。

更多关于《机器学习 : 全彩图解+微课+Python编程(鸢尾花书系列第7册)》的信息(豆瓣图书页面)

下载

如果上方的下载按钮无法下载,可以使用此处的下载地址手动跳转。

本站所有资源均经过人工检查,确保质量。每一个都是互联网上能收集到的质量最好的版本。对于多个版本的书籍,一般只收录最新版本。

本站所有资源均免费,如果您觉得还行,请分享给更多的人。如果您有任何问题,或者想贡献更优质的版本,可以点击下方【建议/报告问题】按钮提交。